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ABSTRACT 

It is shown that general second order elliptic boundary value problems on 
bounded domains generate analytic semigroups on L,. The proof is based on 
Phillips' theory of dual semigroups. Several sharp estimates for the correspond- 
ing semigroups in Lv, 1 =< p < ~, are given. 

Introduction 

T h r o u g h o u t  this p a p e r  ~ deno tes  a bounded  doma in  in R" of class C 2. Thus  

01) is an (n - 1)-dimensional  C2-manifold such that  ~ lies locally on one  side of 

0 fL  M o r e o v e r  we suppose  that  a ~  = Fo U F~, where  Fo and F1 are bo th  open  and 

closed in 0 ~ and Fo f3 F~ = 0 .  

W e  consider  regular elliptic boundary value problems (st, ~ ) with real  cont inu-  

ous coefficients on ~ ,  that  is, 

Mu : = - Dj (ajkDku) + ajDju + aou, 

where  ajk = akj ~ C~(~,  R), aj, ao ~ C ( ~ ,  R), 

ajk(X)~J~k >0 VX~fi, ~ = (~'," "', ~°) ~ R" \{0}, 

and 

{~__~ on ]Vo, 

~ u : =  Ou+floU o n F l ,  

w h e r e / 3  E C~(F1, R")  is an ou tward  point ing,  nowhere  tangent  vec tor  field and 

/30 ~ C~(F~, R). (We use the s u m m a t i o n  conven t ion  th roughout . )  Thus  ~ is the 
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Dirichlet boundary operator on Fo and the Neumann or a regular oblique 

derivative boundary operator on F1. Of course, either Fo or F1 may be empty. 
This boundary value problem (BVP) induces a linear operator 

A0 : C~(h) := {u E C:(h) ] ~u  = 0}---~ C(h)  

by letting A0u:= ~¢u. Considered as an unbounded linear operator in Lp (f~), 

1 =< p < 0% A0 is closable and densely defined. The closure of Ao in L~ (f~) is 

denoted by Ap and said to be the Lp-realization of the BVP (~, ~). 
It is known (e.g. [11, 33]) that - Ap generates an analytic semigroup in L v (~q) 

for 1 < p < oo. It is the main purpose of this paper to prove - -  under slightly 

stronger regularity hypotheses - -  that the same is true in L~(I)). In fact, in a 

natural (formal) way one can associate with the BVP (~/, ~ )  a formally ad]oint 
BVP (sg ~, ~ ' )  which is, up to regularity, of the same form as (~¢, ~) .  Hence, we 

impose additional regularity restrictions on (~/, ~ )  and F~ if we suppose that 
(~/#, ~# )  is a regular elliptic BVP (see Section 4 for details). 

Our main result is the following: 

Suppose that ( ~ , ~ # )  is a regular elliptic BVP. Then - A 1  generates a 
compact, positive, analytic semigroup on LI(fl). 

In addition we study the question under what conditions - A ~  generates a 

contraction semigroup on L~(12) and when - A p  generates a contraction 
semigroup on Lp(l~) for each p E[1,oo). These results generalize earlier 

theorems due to Br6zis and Strauss [6] (cf. also [3]). 
The fundamental idea of this paper is based on a slight extension of R. S. 

Phillips' theory of dual semigroups [24], which is interesting for its own sake. 

Using this theory it is shown that we can associate with LI(I~) a "semigroup 

dual" L~(I~), given by 

Co(h):= {u c(h) [  u [ r0 = 0}, 

such that the semigroup dual C0°(l~) of C0(h) is again LI(I~). Thus, L ~ ( f ~ ) =  

L~(~), that is, L~(O) is "semigroup reflexive". Moreover, with A~ we can 

associate a "semigroup dual" A~ in L~(O) such that A ~  = A1, and it can be 

shown that A~ is induced in a natural way by the formally adjoint BVP 

(s/#, ~ #) in Co(h). 
On the basis of this knowledge we study regular elliptic BVPs in C0(h). Due to 

recent results of Stewart [30, 31] it follows that - A ~  generates an analytic 

semigroup on Co(h). By means of the general semigroup duality we obtain from 

this fact easily the stated result for - A~. Similarly we deduce by this method the 
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fact that - A~ generates (given additional hypotheses) a contraction semigroup 

on L~(I)) from the corresponding result in Co(~), where it is an almost trivial 

consequence of the maximum principle. Finally, the general case 1 < p < oo is 

treated by interpolation. 

The functional analytic abstract framework is given in Sections 2 and 3. Our 

main results about semigroups generated by the BVP (M, ~ )  are contained in 

Sections 10-12. An important technical lemma about an appropriate right- 

inverse of the boundary operator ~ is proven in Section 5. The remaining 

sections contain studies of the BVP (M, ~ )  in different function spaces which are 

important for the proofs of our principal results. 

After this paper had been completed the author became aware of a paper by 

Tanabe [32] where it has been stated (in much greater generality but essentially 

without proofs) that -A~ generates an analytic semigroup in Li(f~). Tanabe's 

approach is based on estimates of the Green kernel and is completely different 

from ours. Also Professor Pazy informed the author that in his expanded version 

of [23] (which is to appear as a book in Springer-Verlag) he has a proof of the 

fact that regular elliptic BVPs of arbitrary even order generate analytic 

semigroups in L~(12). His proof is closely related to ours and even simpler, since 

he doesn't use dual semigroups explicitly. However, since our paper contains 

additional precise information (cf. in particular the results of Sections 11 and 12) 

and since our method might also be useful in other circumstances, the publica- 

tion of this paper seems to be justified. 

1. Preliminaries 

Let X be a Banach space over K(:= R or C). Then X' denotes the dual of X 

and ( . , . )  : X' × X ~ K the duality pairing. If Y is a locally convex topological 

vector space over the same field, ~(X, Y) is the space of all continuous linear 

operators from X into Y, endowed with the topology of uniform convergence on 

bounded subsets of X. Thus ~(X, Y) is a Banach space with respect to the 

standard operator norm if Y is a Banach space, and 5~(X):= £g(X,X). We 

denote by 3~(X, Y) the closed linear subspace of LP(X, Y) consisting of all 

compact linear operators, and YE(X): = Y((X, X). We write X ~ Y or X C'---> Y, 

respectively, if X is a linear subspace of Y and the natural injection is 

continuous or compact, respectively. 

Let X'--~ Y and let A :dom(A)C Y---> Y be linear. Then we define the 

X-realization Ax of A, 

Ax : dom(Ax) C X ---> X, 
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by dom(Ax):  = {x E X n dom(A) [Ax E X} and Axx:= Ax. It is obvious that 

Ax is closed (i.e. has a closed graph) if A is closed. (It should be noted that the 

X-realization of A is called by Kato "the part of A in X" ,  e.g. [33, definition 

4.2.11.) 
If A : d o m ( A ) C  X--->X is a closed linear operator we denote by o'(A) the 

spectrum (of the complexification of A in the case that K = R), by p(A) the 

resolvent set, and by R( ,~ ,A):=() t  - A )  -~ the resolvent of A at A Ep(A) .  
Let X be a real Banach space. A subset P of X is said to be a wedge if 

P + P C P, R+P C P, t5 = p, and P ~  •. A wedge P satisfying P n ( - P)  = {0} is 

said to be a cone. Every wedge induces a preorder =< (that is, a reflexive, 

transitive relation) in X by letting x =< y iff y - x E P. If P is a cone, then this 

preorder is an order (that is, it is also antisymmetric), and X: = (X, P)  is said to 

be an ordered Banach space (OBS) with positive cone P. Clearly, P = 

{x E X I x >= 0}, and we often write X ÷ for the positive cone of the OBS X. 

Moreover we write x > y if x => y but x / y .  

If (X, P) and (Y, (9) are OBSs then 5~+(X, Y) :=  {T E Ge(X, Y)[T(P)C Q} is 

a wedge in ~ (X,  Y), the wedge of positive linear operators, inducing the natural 

preorder in 5f(X, Y). Thus T >=- 0 means that T E 5¢+(X, Y). In particular, X '  is 

preordered by the dual wedge P ' :  = £~+(X, R) = {x' E X '  l (x', x ) => 0 Vx E P}. It 

is not difficult to see (on the basis of the basic separation theorems for convex 

sets) that T E  ~+(X)  iff T'ELe+(X'). We refer to [27] for the elementary 

properties of OBSs which we shall use. 

In this paper all function spaces are given the natural, that is, pointwise order 

and the corresponding positive cones are denoted by the superscript + .  In 

general, all function spaces can be taken over R or C. However, if we speak 

about order properties it is always understood that we consider real functions. 

We write A ~ cg(X, M, oJ) if A is the infinitesimal generator of a strongly 

continuous semigroup {U(t)[ t => 0} in ~ ( X )  such that 

II w(t)ll ~ Me ~" Vt >- O. 

Moreover, we let ~/(X):= U{~(X,  M, o~)1M => 1, ~o ~ R}, and e'A:= U(t). Thus 

A generates a strongly continuous contraction semigroup on X iff A 

~/(X, 1, 0). We write A E Y((X) if A generates an analytic semigroup on X, 

where - -  in the case K = R - -  complex analyticity refers to the complexification 

of X and the corresponding operators. 

If A E ~q(X) and e'A ~ ~ ( X )  for t > 0, then A is said to generate a compact 

semigroup. If X is an OBS then we write A E ~+(X) if e'a E LP+(X) for t > 0, 
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that is, if A generates a positive semigroup. Clearly, ~3+(X,M,~o): = 

~d(X, M, ~o) (q q3+(X) and Y(+(X) = Yg(X) n q3+(X). 

We constantly use the simple but important fact that, for each a E R, 

A E c ~ ( X , M , w )  i f f a + A @ c ~ ( X , M , w + a )  

and that 
e 'C~+A) = e~'e tA Vt :> O. 

We refer to [7, 8, 14, 23] for the general theory of semigroups of linear operators. 

We denote by u:= (vl, • •., v") the outer normal on 0fL The outer conormal ~'a 
with respect to M is defined by v~:= a~kv ~ for j = 1 , . . . ,  n. The norm in Lp (f~) is 

denoted by I1" I1,, and I]" ILP is the usual norm on the Sobolev space W~(f~). 
Finally, ~(f~) is the space of all test functions on fl. 

If no confusion seems possible we denote by II-II. also the norm on ~(L~ (fl)). 
Moreover,  if C E Lf(Lp (1~)) such that C I Lq ([l) E ~(Lq (12)), where 1 -< p < q =< 

~, we write simply llCIIq for IIc ILq( )ll . 

2. Dual semigroups 

Let A E ~J(X, M, oJ). Then the dual semigroup {(e'A )'l t E R ÷} of {e'A [ t @ R ÷} 

is a semigroup in ~ ( X ' )  satisfying 

I I ( e 'A ) ' l l <__Me ~' VtER +. 

But, in general, that is, if X is not reflexive, the dual semigroup is not strongly 
continuous. For this reason we let 

X'~:={x'  ~ x'l[t ~. (e'A)'x '] E C(R ÷, X')}, 

that is, X°A is the largest subset of X '  on which the dual semigroup is strongly 
continuous. It is not difficult to see that X~ is a closed linear subspace of X'  

which is invariant under (e 'A)', t _-> 0, and satisfies 

dom(A ') C X~ 

(e.g. [7, proposition 1.4.6]). Let 

( e ' A ) ' : = ( e ' A ) ' I X ~  V t E R  +. 

Then {(e ,A ) .  I t E R +} is a strongly continuous semigroup in 5E(X°a), the strongly 

continuous (restriction of the) dual semigroup of {e 'A I t => 0}. We denote by A • 

the infinitesimal generator of this strongly continuous dual semigroup so that 

e ,A- = (e ,A ) .  Vt E R +. 
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Then we have the following lemma due to Phillips [24] - -  as are all the results of 

this subsection. 

(2.1) LEMMA. A e E ~ ( X e A , M , o ) )  and A e is the X~-realization of A ' .  

Moreover, Xea = clx,(dom(A')), where clx,(. ) denotes the closure in X ' .  I f  X is 

reflexive, then X ~  = X '  and A • = A '. 

PROOF. [7, proposition 1.4.7] or [14, section 14.4]. [] 

By repeating the above construction with X and A replaced by X ]  and A •, 

respectively, we obtain the space 

X ~ :  = ( X ~  - = clcx-~,(dom((A e),)). 

In analogy with standard duality theory X~ and X ~  are called the A - d u a l  and 

A-bidual  of X, respectively, expressing the fact that these spaces depend on A, 

in general. 

In the remainder of this section we suppose that 

Then 

A E ~d(X, 1, 0). 

IIx II = sup{I( x • ,  x>l I IIx'll ~ 1, x ° ~ X'~} 

for each x E X, and the map 

defined by 

,,'~ : x - - ,  (x'~)', 

(K'~(x),x'>:=(x',x> V x ' ~ X ~ ,  

is a norm isomorphism onto a closed linear subspace of Xa  N (cf. [14, theorems 

14.2.1 and 14.5 1]). Similarly as in standard duality theory we identify X with 

Kea(X) by means of the norm isomorphism K] SO that 

x c  x ~ ,  

and X is said to be A-reflexive if X = Xa  ee. 

In order to characterize A-reflexive spaces, A is said to have a o'(X, Xea) - 

compact resolvent if, for some A E p (A) - -  equivalently: for all A E p (A) - -  the 

resolvent R (A, A)  maps bounded sets into or(X, Xea)-compact sets, that is, into 

sets which are compact with respect to the X]-topology of X. 

(2.2) TrmOREM. X is A-reflexive iff A has a cr(X, Xea)-compact resolvent. The 
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latter is the case irA has a weakly compact resolvent, thus, in particular, if either X 
is reflexive or A has a compact resolvent. 

PROOF. [14, section 14.6]. [] 

3. Semigroup duality 

In this section we extend slightly Phillips' theory of strongly continuous dual 

semigroups by considering semigroups in Xe, whose generators are distinct from 

A e and do not necessarily commute with A e 
Throughout this section we suppose that A @ ~(X, 1, O) and that 

B : d o m ( B ) C X ~ X  

is a densely defined linear operator. 
We define the A-dual  BeA of B to be the XeA-realization of B'. Thus BeA is a 

linear operator in XeA. If B~ is also densely defined then we define the A-bidual 
BA N of B by 

that is, 

B ~ : = (B ~)~o, 

d o m ( B ~ )  = {x *"D E dom((B~)') n X ~ l ( B ~ ) ' x  *"~ E X ~ }  

and BANX N = (B~)'x ~ .  

The following lemmas exhibit a strong analogy to standard duality theory. 

(3.1) LEMMA. B~ is closed. If  B~ is densely defined, then B ~  D B. 

PROOF. The closedness follows from the closedness of B'. 
Let Bea be densely defined so that Ba  *"~ exists, and let x Edom(B).  Then 

(K ~(Bx ), x e) = (x e, Bx ) = ( B ] x  e, x) = (Kea(x ), B~x e) 

for all x e E d o m ( B ] ) .  Hence Kea(x)Edom((B~) ') and (Bea)'Kea(x)= 

K ~(Bx ) E X Aee. Thus x =-- K~(x) E d o m ( B ~ )  and B aee x = K°a(Bx ) =-- Bx, that is, 

B aN D B. [] 

(3.2) LEMMA. Let B be closed and suppose that R(A,B')(Xea)C xeA for all 

E p (B). Then p (B) C p (B ~) and R (~, B ~) = n (A, B') I X°a for all )t E p (B). 

PROOF. Let )t E p ( B )  and xeEdom(Bea). Then, since p ( B ) = p ( B ' )  and 

R(A,B')  = R(A,B)' ,  

(3.1) R(A,B')(A -Bea)xe=R(A,B ' ) (A  - B ' ) x e = x e = ( A  - B ' ) R ( A , B ' ) x  e. 
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Thus R(A, B')(dom(B~)) C dom(B~). Hence, if ye  ~ XOa is arbitrary, 

(3.2) yO = (A - B ' )R (A, B')y ° = (A - B~)R (A, B')y*. 

Now it follows from (3.1) and (3.2) that A ~ p (B °a) and R (A, B ' )X~ -- R (A, B ~). 
[] 

Observe that, trivially, R (A, B')(X~) C X~ for all A E p(B) if dom(B')  C X~. 

Suppose now that B @ c~(x). Then, by Phillips' theory of Section 2, B ° 

q3(X~). However, in practical cases the space X~ may be easy to determine but 

not the space X~.  For these reasons we are interested in situations where B~ 

generates a semigroup on X~. 

(3.3) THEOREM. Let B ~ c~(X, M, to) and suppose that BoA is densely defined 
and R(A, B')(X°A) fi X~ for all A E p(B). Then BoA C ~3(X~, M, o~) and e 'B*~ = 

(e'B)'[X~ for t >=O. 

PROOF. Since B E ~(X, M, to), it is closed, densely defined, (to, o o)C p(B), 
and - -  by the necessity part of the general Hille-Yosida theorem (e.g. [14, 

theorem 12 .3 .1 ] ) -  

I I R ( A , B ) " I I < - M ( A - t o )  -" VA > oJ, n ~ S .  

Thus BoA is closed by Lemma (3.1) and densely defined by assumption. Moreover 

Lemma (3.2) implies (to, o o)C p(B~) and 

II R BOA)" II -< II R (A, B')" II -- II R (A, B)" II =< M(A - to)-" 

for A > to  and n @N. Thus B°a~ ~(X°a,M, to) by the sufficiency part of the 

Hille-Yosida theorem. 

Recall (e.g. [14, theorem 11.6.6]) that 

[t ( (3.3) e"x = lim R , B x = lira 1 __t  B x 

for each x ~ X and every t _-> 0. Hence, again by Lemma (3.2), 

(x*, e'~x) = lim x °, R , B x 

for all x e E Xea and x E X. This proves the last assertion. [] 

(3.4) COROLLARY. Let B E c~(X), let R(A,B' ) (X~)C X~ for all A Ep(B) ,  
and let BoA be densely defined. Then X~ C X~ and e " °  l x*~ = e 'B*~ for t >=0. 
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PROOF. This follows from Theorem (3.3), the fact that X~ is the largest 

subspace of X '  on which the dual semigroup {(e ,B), I t _-> 0} is strongly continuous, 

and from (e 'B) ' [X~ = e 'B*. [] 

It is clear that X~ = X '  if B E ~ ( X ) .  This shows that, in general, the inclusion 

X~ C X~ is proper. 

(3.5) THEOREM. Let B E ~(X),  let R (A, B')(X~) C X~ for all A E p(B), and 
let BOa be densely defined. Then 

(i) B C ~ ( X )  ~ B°AE ~(XeA); 

(ii) S E ~+(X) ~ BoA E ~3 ÷(XA); • 

(iii) e'B E 5'{(X) ~ e ' ~  ~ ~[(XeA). 

PROOF. (i) It is well known that C C ~ ( X )  iff C is densely defined and closed 

and there exist constants c E R* and 3' @ R such that p(C) D {A E C I Re A -> 3'} 

and 

]LR(A,C)H<=c(I+IA[) -' for ReA_->7 

(e.g, [16, theorem 13.2]). Thus, since IIR(A,A')II--IIR(A,A)II, the assertion 

follows from Lemmas (3.1) and (3.2). 

(ii) Since e" _-> 0 implies (e ,B ), __> 0, the assertion follows from Theorem (3.3). 

(iii) is again a consequence of Theorem (3.3) and Schauder's theorem on the 

dual of a compact linear operator  (e.g. [37, theorem X.4]). [] 

(3.6) PROPOSITION. Let X be A-reflexive, let B be closed with nonempty 
resolvent set, assume that R(A, B')(X~)C X~ for all A E p(B),  and let BOA be 
densely defined. Then B ~  = B. 

PROOF. Let A E p(B). Then (A - B)~ = A - BoA and (A - B ) ~  = 

A - B ~  D A - B by Lemma (3.i). Moreover,  by Lemma (3.2), 

p(B) C p(B~) C p (B~) .  

Hence A - B ~  and A - B are both bijective which shows that A - B ~  cannot 

be a proper  extension of A - B. Thus BA N = B. [] 

4. Formally adjoint boundary value problems 

We define the formally adjoint differential operator •# of ~ by 

~ v :  = - Dj(a,kDkv)- Dj(ajv)+ aov. 

Then, by the divergence theorem, 
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(4.1) ( M u ] v ) ~ - ( u [ M ' ~ v ) c ~  - f r  (Ou Ov ) = , ~ v - -~v ,  u -  a~vJuv act 

for all u, v E Cg(•):= {u ~ C2(1~) ] u ] Fo = 0}, provided aj E Cl(fi), j = 1 , . . . ,  n. 

We let 

p: = (v, ] v)l(/3 I v) ~ C'(F1), 

where (. I" ) denotes the Euclidian inner product in R", and define a tangential 

vector field on F1 of class C 1 by 

r :=  v. - 0/3, 

so that 

0 0 0 
(4.2) Or, = p - ~  + Or " 

Since p ( x ) > 0  for all x EF t ,  we can define /3#E Ct(FI, R ") by 

p/3* :=v,  + r  

so that 

0 0 a 
(4.3) Or, = p 0/3 • Or " 

Since P(/3*I v ) = ( v ,  lv),  we see that /3# is an outward pointing, nowhere 
tangent vector field on Ft. 

It follows from (4.2) and (4.3) that 

a___~.u a v ( a_~ 
on, v --~v~ u = P 

Since, for u, v E Cl(f/), 

0o ) v - - ~ u  + ar 

O(uv) = (grad(uv) i z) = (gradr,(UV) I r)r,, 
d~" 

where (. I" )r, denotes the inner product (that is, Riemannian metric) on F, 

induced by (. I') and gradr,(UV)is the corresponding gradient of (uv)l F,, it 
follows that 

0 ¢ xuv ~ z = divn(uvz ) _ uv divr,(r), 
aT 

where divr, is the divergence on F1. 
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Finally we define /3;" E C(F0  by 

(4.4) p/3o ~ := p/3o + ajv j + divrl(z) 

and the formally ad]oint boundary operator ~ #  of ~ by 

{~__~ on Fo, 

~ v : =  Ov +B'~v on F1. 

Then, by applying the divergence theorem on F, to the right hand side of (4.1), 

we obtain Green's formula 

[ v ) ~ - ( u  ] M#v)tz = - f r ,  p(v~3u - u ~ 3 # v ) d o  " (~u 

for all u, v E CoZ(~). 

We can write ~ in the form 

# 
M#v = - D i (a~Dkv) + a~. Div + ao v, 

and 

I'~1 ~ C 3 i f ~ # l . J a .  

Of course, these conditions are sutficient but not necessary. 

If we repeat the above procedure, starting with (M~, ~ )  instead of (~,  ~ ) ,  

we see that p~'=p and z ~ =  - %  which, together with (4.5), implies 

( ~ ' ) # = M  and ( ~ # ) ~ = ~ .  

Moreover,  the BVP (M, ~ )  is formally self-ad]oint, that is, M# = M and ~ = 
iff aj = 0 and/3 = av,  for some oe E CI(F0 satisfying or(x)> 0 for all x E F1. In 

this case ~- = 0 and p = 1/a. 

It should be noted that the above results are also true and meaningful if n = 1, 

that is, if 1~:= (x0, x l) is a bounded open interval in R, provided v(x0): = - 1 ,  

v(x~):= 1, and o- is the counting measure on 01-1. 

where 

(4.5) ajk:=ajk, aT :=- -a  j, a~:=ao-Diaj .  

Then we see from (4.4) and (4.5) that 

(~, ~ )  and (M s, ~ )  are regular elliptic BVPs provided 

a,, ajk ~ C'(fi),  ao ~ C(fi)  
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Of course it is well known that there are Green formulas for elliptic BVPs (e.g. 

[20, section 1.6] or, in much greater generality, [19, section II.2]). It is the 

purpose of the above considerations to give a normalization of the formally 

adjoint boundary operator ~ #  (through the weight function p), a closed 

representation of ~# ,  and to exhibit clearly the regularity properties of the 

coefficients of ~# .  

5. Trace and density theorems 

Let 1 < p < oo and 0 =< s =< 2. Then W ~ ( M )  denotes the standard Sobolev 

(-Slobodeckii) space on M, where M equals ~ or F,, i = 0, 1 (e.g. [1, 7, 21, 34]). 

We denote by 

~, ~ ~e(C2(fi), c2(r,)) ,  i = 0, 1, 

the trace operators, y~(u):= u [ F , ,  as well as their continuous extensions 

y, E L#(W~(l~), Wvk-'/P(C,)), k = 1,2, i = 0 , 1  

(e.g. [1, 7, 21, 34]). By means of ~,~ we can rewrite the boundary operator ~ more 

precisely in the form 

which shows that 

= (y0, tsJ /, o Dj + / 3 o r , ) ,  

E ~'(W~(~~), W~-l/p(Fo) × W~-I/p(F1)). 

The following important extension lemma, generalizing [2, lemma 3.2], shows 

that ~ possesses a continuous right inverse enjoying some additional properties. 

(5.1) LEMMA. There exists 

TIl l - - l /PIp  

satisfying 

as well as 

~ = i d  and yl  ° ~ = O 

(C2(F0) x CI(F0) C C2(•). 

PROOF. By means of local coordinates and standard partition of unity 

arguments we can reduce the problem to the case where f~ is replaced by the 

upper halfspace H": = {x E R" [ x" > 0} and all functions involved have compact 
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supports and are at most of class C 2 (compare, for example, the proof of lemma 

(3.2) in [2]). If al l"  = R  "-~ x{0}---R "-1 corresponds to (a portion of) Fo, the 
assertion is simply the standard (inverse) trace theorem (e.g. [21, theorem 

11.5.8]). Thus we can assume that OH" corresponds to (a portion of) F1. 

Let E be an arbitrary Banach space and let U(t) ,  V( t ) ,  t >= O, be strongly 

continuous semigroups on E. Then we define the convolution U * V by 

I0 ' U * V ( t ) x : =  U ( t - r ) V ( r ) x d r  Vt_-__O, x E E .  

Moreover,  we let U((2)): = U * U. 
Let m :=  n - 1 and, for j = 1 , . . - ,  m, let Uj:= {Uj(t)l  t _->0} be the translation 

semigroup 

U i ( t ) u ( y ) :  = u(y~, ' '  ", yJ-~, yJ + t, y i+ , , . . . ,  y,,). 

Then it is well known that the Uj are strongly continuous, pairwise commuting, 

positive semigroups on E, where E : = L p ( R ' )  or E : = B U C ( R " ) ,  the space of 

bounded and uniformly continuous functions on R". Moreover,  the infinitesimal 

generator Aj of Uj is given by 

d o m ( A j ) = { u E E [ D j u ~ E }  and A j u = D j u  

(e.g. [7, sections 1.3.3 and 4.3.1]). 

Let V( t ) :  = t id~ for t _-> 0 and define ~ u  by 

~ u  (t) : = q~ ( t ) t -2"  V * U] c2)) * ' "  * U~2))(t)u 

for t > 0 and u E E, where ~o E C2(R +, R) has compact support and satisfies 

q~(0) > 0 and D~o(0)= 0. If ~o(0) is suitably chosen and if u E Ni"--1 dom(Aj),  it 

follows from the very general results of J. L. Lions [17] that ~ u  ~ C2(R +, E),  

that ~ u ( 0 ) =  0 and D ~ u ( O ) =  u, and that ~ E ~(T1, T2), where 7"1 and 7"2 are 

appropriate trace (that is, special interpolation) spaces. Choosing in particular 
E =Lp(f~), it follows that, up to equivalent norms, T1 = W~-'/P(0H ") and 

T2 = W~(H") (cf. in particular [17, section 9]). From these facts the assertion is 

readily deduced. [] 

It should be remarked that a more direct but much more technical proof of 

Lemma (5.1) could be based on the results in [21] (cf. in particular [21, lemma 

11.5.8]). In [21] the explicit use of semigroups and interpolation spaces is 

avoided, but the principal ideas of [21] and [17] are the same. 

As an easy consequence of Lemma (5.1) we obtain the following approxima- 
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tion lemma. Here and in the following we use the following notation: if X(fl)  is a 
space of functions on 1~, we let 

X~, (l'~):= {u ~ X(l~) ] ~Ju = O} = X ( n )  n ker(~) ,  

whenever ~ is well defined on X(fl). Similarly, 

Xo(n) : = {u E X(fl)[ To(U) = O} = X(fl)  n ker(yo). 

Observe that there is no restriction on u IF1 if u E Xo(~). 

(5.2) LEMMA. Ca( ) is dense in W ~ ( ~ )  

PROOF. Let u E W~,~(~) and e > 0 be arbitrary. Since C2(fi) is dense in 

W~(f~), there is a v E C2(~) satisfying II u - v 112, < e (1 + H ~ II)-'- Then 

~v  E C2(Fo) × CI(F,) and w : = ~ v  E C2(~) by Lemma (5.1). Thus v - w E 
C~,( ) and 

Ilu - ( v  - w)l12,~ =<llu - v ll2,p + II w 112,p 

which proves the assertion. [] 

In the following we let 

CZ~(l~ U F1): = {u E C2(fi) I supp(u) C f~ U F,} 

and prove another density result which will be useful later, namely 

2 1) (5.3) LEMMA. C,.~( U Fa) is dense in Co(fi). 

PROOF. By means of local coordinates and a standard "translation argu- 

ment"  based on the fact that translation is strongly continuous in BUC(R"), it 

follows easily that C2,(~ U F~) is dense in Co(~) (cf. the proof of [1, theorem 

3.181). 
Let u E Co(~) and e > 0 be given. Then there is a v E C~(fl U F~) satisfying 

II u - o I1= < e/2. Let w: = ~ v  and, for each 6 > 0, let q~s G ~ (R") satisfy 

0 _-< q~, _6- < 1, supp(q~,) E B(F1, 6), and ~08 I B(Fa, 6/2) = 1, where 

B(Fa, p): = {x E R" I dist(x, F~) < P}. Then 9,w E C~(f~ U F~) for ~ sufficiently 

small and II ~,w tt---" 0 as 6 ---> 0, since ~0,w Iv, = 0 by Lemma (5.1). Hence we find 

a 6 > 0 such that z: = ~o~w ~ C~(I~ U F~) and tl z I1o < , /2 .  Since ~ z  = ~ w  = ~v, it 

follows that v - z ~ C,2~(I~ U F~) and 

Ilu - ( v  - z)lp_-< II u -v l l~  + IIz I1° < ,,  

which proves the assertion. [] 
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6. The maximum principle 

In this section we give an extension of the well known "inverse positivity" 

result for elliptic BVPs of second order, which are obtained from Hopf's 

maximum principle. Since we do not presuppose any sign condition for [3o, our 

results seem to be new even in the case of classical solutions. 

In the following we denote by P :Fo-->R n an arbitrary outward pointing, 

nowhere tangent vector field. 

(6.1) THEOREM. There exists a constant A E R such that 

(6.1) u E W ~ ( f l ) ,  p > n ,  (M+A)u_->0, ~3u>-_O and A > A  

imply u >- O. Moreover, if u ~ 0 then u ( x ) > O for all x E ~ U F1 and ( au / OP ) ( x ) < 

0 for x E F0. 

PROOF. Let v := (0, I[ flo[[~) E C2(Fo) × CI(F1), and let ~p @ C2(R ") satisfy 0 =< 
q~ ___< 1, supp(qQC B(Fi,2e), and q~ tB(F~,e)= 1, where e > 0  is so small that q~ 

vanishes in a neighborhood of Fo and w: = 1 + ~p~v > ~. Since ~ v  E C2(~) and 

9~v [ Fl = 0, this choice of e is possible. Then w E C2(1~), w = 1 in a neighbor- 

hood of Fo, and ~ w  > 0  by Lemma (5.1). Moreover, ( ~ + h ) w > 0  for A > 

2{la/wll~=:X. 
Let (6.1) be satisfied. Then u E C~(I~) by the Sobolev imbedding theorem, and 

u is a.e. twice classically differentiable [30, theorem VIII.l]. (Clearly, we identify 

the equivalence class u E W2(I'I) with an appropriate representation, as is usual 

in the statement of imbedding theorems.) Now the assertion follows by an 

obvious combination of the generalized maximum principle of Protter and 

Weinberger [25, section 11.5] with Bony's maximum principle [5]. [] 

It should be observed that the above theorem remains true if the coefficients 

of ag are only supposed to belong to L~(I~). 

7. Elliptic boundary value problems in Lp (fl), 1 < p < oo 

For each p E(1,oo) the Lp-realization A, of the BVP (~,  ~ )  is defined by 

A~ : dom(A~) C L~ (~)--, L~ (f~), 

where dom(Ap):= W~,~(I]) and Apu:=~u. Then it is well known (e.g. [33, 

section 3.8]) that 

- A~ E ~(Lp (1~)). 
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Standard regularity theory implies that the spectrum of A~ is independent of p 

and that 

(7.1) (x +A, ) - ' [Lq (n )  = (h +Aq)  i 

for A E p ( -  A,)  and 1 < p =< q < oo. Hence (7.1) and the representation formula 

(3.3) show that e-'AP leaves Lq (ll) invariant and that 

(7.2) e-tAP [ Lq (1~) = e ,Aq for 1 < p < q < oo. 

Since W2p,~(f~) C'---~ Lp (1~), A. has a compact resolvent. Hence it follows from 

Pazy's theorem [22, theorem 3.3] that e-'% E Y{(Lp (l))) for t > 0. 
Let u ~ C+([I). Then (7.1) and Theorem (6.1) imply that (h + Ap)-lu >= 0 for 

all h > ~(. Since C+(I~) is dense in L~(~), it follows that (h + Ap) -1 _-> 0 for h > Jr. 
From this we deduce that e 'A">--__O for t_-->0 (cf. [14, theorem 11.7.2]). In 

summary: 

- Ap generates a compact, positive, analytic semigroup on Lp (~). 

In the following A [, denotes the dual of Ap and A ~" the Lp-realization of the 
formally adtoint BVP (M#, ~#). For completeness we include a simple proof of 
the following well-known 

(7.1) THEOREM. Suppose that (~ ' ,~3  #) is a regular elliptic BVP. Thus 
A'~ = Ap ~,, where p ' :=p / (p  - 1). 

PROOF. Green's formula and Lemma (5.2) imply 

(v, Apu) = (A~,v, u) Vu Edom(Ap), v ~dom(Av~,). 

Thus A~ D ApS. Since h + A ~ = ( A  +Ap)' and h +Ap  ~, are both bijective for 
sufficiently large h E R, we see that A ~ cannot be a proper extension of A p*,. [] 

8. Boundary value problems and semigroups in C(~) 

We define the L®-realization A® of (~/, ~ )  by 

dom(A®):= {u ~ W~,~,([~) [ Apu E L®(I~)} 

and A®u:=Apu, where p E(1,0o) is arbitrary. It follows from (7.1) and the 

Sobolev imbedding theorem that A® is independent of p and that A® is the 

L®(lI)-realization of Ap (in the sense of the definition of Section 1). Clearly A~ is 
a closed linear operator in L~(~). 
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The following lemma shows that A~ is not densely defined and that the closure 

of its domain is independent of the special operator. 

(8.1) LEMMA. dom(A~)= Co(h). 

PROOF. The assertion follows from the obvious inclusions 

C~,~(~-~ U F1) C dom(A®) C W~.~(f~) C Co(h), 

where p > n, and from Lemma (5.3). [] 

Finally we define the C-realization A of (s4, ~ )  to be the Co(h)-realization of 

A=. Thus 

dora(A): = {u E dom(Ao) [ A~u ~ Co(h)} 

and A u : = A = u .  Observe that C~.~(OUF1)Cdom(A). Hence A is densely 

defined by Lemma (5.3). 

(8.2) THEOREM. - - A  generates a compact, positive, analytic semigroup on 

c0(h). 

PROOF. The fact that - A E ~(Co(h)) follows from the much more general 

results of Stewart [30, 31]. The Rellich-Kondrachov theorem implies the 
compactness of the resolvent of A. Thus, again by Pazy's theorem, - A  

generates a compact semigroup. The positivity assertion follows also again from 

Theorem (6.1). [] 

The following theorem is essentially known. 

(8.3) Tm~OREM. I f  ao >= 0 and/30 >= 0 then - A E ~(Co(h), 1, 0). 

PROOF. Let h > 0  and u ~dom(A) ,  and let v:=ll(h + A ) u l l J h .  Then 

(sO +~)(v_+ u)_->0, ~(v+_u)>-_O 

so that - v <- u <= v by the maximum principle (cf. the proof of Theorem (6.1)). 

Thus AII u I1o --< II(A ÷ A)u  )l~ for all h > 0 and u E dom(A), and the assertion 
follows from the Hille-Yosida theorem. [] 

(8.4) REMARK. If -- A E ~(Co(h),  1, 0), then ao => 0 by a result of Sinestrari 

[28]. If n = 1, then Fattorini [10] has shown that also /3o_->0. By the same 

arguments it should be possible to show that/30 => 0 in the general case. We leave 

the details to the reader. [] 

It is easily verified that or(A)= o'(A~), 1 < p  <oo. 
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9. Elliptic boundary  value problems in LI(fl) 

It follows from the Agmon-Douglis-Nirenberg Lp-estimates that the graph 

norm on dom(Ap), 1 < p < 0% is equivalent to II" 112p. Hence Lemma (5.2) implies 

that C~(~) is a core for Ap, that is, Ap is the smallest closed extension of 
Ap I C a ( ) ,  1 < p < oo. This fact motivates the definition of the Lrrealization of 

(~,  ~ )  given below. 

Throughout this section we suppose that the formally adjoint B VP ( ~  #, ~3 #) is a 

regular elliptic B VP. 

2 - -  (9.1) LEMMA. ~ [ C~(f~) is closabte in LI(Ut). 

PROOF. Let (uj) be a sequence in C2(1~) such that u~--->0 and sguj--->v in 

L1(II). Then, by Green's formula, 

(w, v) = !im (w, ~/uj) = lim (~/#w, uj) = 0 

for every w E ~ (ll). Hence v = 0, which implies the assertion. [] 

We define now the Lrrealization Aa of (~/, ~ )  to be the closure of ~¢ I Ca(2 ~)  
in L~(fl). Thus A~ is a closed densely defined linear operator in Ll(fl), and 

(9.1) A1 I Lp (fl) fq dom(A~) = ap 

for all p > 1. 
The following proposition generalizes a corresponding regularity result of 

Br6zis and Strauss [6, theorem 8 and lemma 23]. Here D ( A  0 denotes the 

Banach space (dora(a  1), I1" IIAI), where I1" HA1 is the graph norm. 

(9.2) PRO1,OSmON. D(A1)'--> W~,0(fl) for 1 ~ q < n/(n - 1). 

PROOF. For 1 < q < ~ and u E C(I=I) let 

Ilull-,, :=sup{l(u I  ) l/llvll ,  Iv c a  ( )}, 

and fix any A E p ( - A). Then, by the arguments of the proof of [2, proposition 

3.3], we deduce the existence of a constant Cq such that 

(9.2) Ilu Ik~ --< c~ II(;~ + A1)ull-~,, Vu ~ c~((~). 

Since wlq,(~)'---~ L=(f~) for q' > n, that is, for q < n/(n - 1), it follows that 

(9.3) I1-,.. _-< c;sup{l(v I w) l/llw II l w m c;ll  II, 

for some constant c~. Now the assertion follows from (9.2). [] 
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(9.3) COROLLARY. A1 has a compact resolvent and or(At) = or(A).  

PROOF. Fix A ~ p(A)  and q E (1, n/(n -1)). Then (9.2) and (9.3) imply the 

existence of a constant c such that 

(9.4) II u II1 --< II u II,,q c II (A ÷ A t)u II1 Vu E dom(A 1). 

Hence h + At is injective. Let  v E LI(fI) be given, choose a sequence ~0j E 9(12) 

such that ~oj ---> v in L1(I~), and let uj: = (h + A~)-tq~j = (h + A,)-t~pj, where 

p E (1, oo) is arbitrary. Then, by (9.4), 

i I , , , - , , l l ,<=cl l ,p,-,p, ll, Vj, k ~N. 

Thus there is a u E L t (~ )  such that uj --~ u and (A + At)uj --+ v in Lt (~) .  This 

shows that u Edom(A t )  and (A+At )u  =v ,  that is, A + A 1  is surjective. 

Consequently, p(AI) D p(A), and A t  has a compact resolvent since 

D(At)'-* Wtq(n) C'--~ Ll(~~). 

Since, trivially, o-(A) C o-(A1) by (9.1), it follows that or (A)  = or (A 1). []  

It is now easy to prove the following basic 

(9.4) THEOREM. A ~ = A ~. 

PROOF. Let  v Edom(A~*), u ~ C ~ ( ) ,  and 1 < p  <oo. Then 

(v, Aau) = (v, Apu ) = (A 'pv, u) = (A ~,v, u) = (A ~v, u) 

by Theorem (7.1) and the definition of A ~. Hence A~ D A ~ by Lemma (5.2). If 

A E p ( - A ) ,  then A + A I =  (A + At)'  and A + A ~ are both isomorphisms. Thus 

A ~ cannot be a proper extension of A ~*. [] 

10. Semigroups in Lt(l~) 

In the following we let M: = - A and ~ :  = (70, uJ3q ° Dj), that is, ~ u  = u on Fo 

and a~u = cgulOv on Ft. For completeness we give a simple proof of the following 

lemma, although it is a special case of the results of Br6zis and Strauss [6]. 

(10.1) LEMMA. -- z{, E C~(L,(~), 1,0). 

PROOF. Let  u ~ (.~ (~), 2 _--< p < 0% and v: = ~ ] u ],-2. Then 

Djv=Ju[V-2(Dfi +(p -2 ) ( f , / l u t )Dj lu l )  and Djlul=Re(fiDju)/[u[.  

Hence,  by Gauss'  theorem, 
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Re(v, (A - A)u ) = A II u IIg + Re<O,v, Dju > 

--- Ilullg+ f .  I .  lP -2 ( lv .12+(p-2 ) lV lu l ( )dx    llullg. 

From this it follows that 

(10.1) A II u lip --< I1(;  + Ap)u lip 

for all u E dom(fi,~) and )t > 0. Since (0, oo) C p( - fi~ ), the Hille-Yosida theorem 
implies -fi~p E ~3(Lp(II), 1,0). Thus, since (~/, ~ )  is formally self-adjoint, we 
obtain - f i ,  p E ~3(Lp(I~),l,0) for all p E (1,~) by Lemma (2.1) and Theorem 
(7.1). Thus (10.1) is true for every p E (1, oo) and u ~ C~ ((l), and, letting p ---> 1, it 
follows that 

'~ II u II, ~ II ('~ ÷ A,)u II, Vu ~ ~ (f i).  

Now the assertion follows from the definition of fi,~, Corollary (9.3), and the 

Hille-Yosida theorem. [] 

In order to simplify the notation we denote in the following the operator - _A1 
simply by A1. Then we prove the following fundamental 

(10.2) THEOREM. Co(h) is the Al-dual of LI(YI), that is, 

Co(h)  = [LI(,.Q)]~,, 

and L,(II) is A,-reflexive, that is, 

Ll(n)  = [Co(fi)]~r. 

If(sg*, ~*)  is a regular elliptic BVP, then A # is the Al-dual of A~ and A~ is the 
A~-dual of A #. 

PROOF. Since, by Lemma (10.1), A, generates a contraction semigroup on 
L,(Y~), it follows from Lemma (2.1) that [L~(f~)]a a, is the closure of the domain of 
the dual (A,)' in [L,(Y~)]'= L.(~) .  Hence, by observing that A~ is formally 

self-adjoint, we see from Theorem (9.4) and Lemma (8.1) that [LI(O)]~, = Co((~). 
Now, since A~ has a compact resolvent by Corollary (9.3), Theorem (2.2) implies 

that L~(O) is A~-reflexive. 

If (M #, ~ # )  is a regular elliptic BVP, then Theorem (9.4) and Lemma (8.1) 

show - -  due to the already proven facts - -  that A # (that is, the Co(~)-realization 
of (M #, ~#))  is the A~-dual of A,.  Since dom(A ~)C Co(h) = [L,(~)]* by Lemma 

(8.1) and Theorem (9.4), the remark following Lemma (3.2) and Proposition (3.6) 
imply (A~)a*~, = A~, whence the last assertion. []  
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Observe that, by the above theorem, A~ = -,zi.  In abuse of notation, we 

denote - A  by A, that is, A~ = A. Consequently, 

(10.2) [L,(I-I)]~, = Co(l)) and [Co(~)]a e = L~(I)). 

After these preparations it is now easy to prove our main results. 

In the remainder of this section we suppose that (~/#, ~# )  is a regular elliptic 
BVP. 

(10.3) THEOREM. --A~ generates a positive, compact, analytic semigroup on 
Ll(f~), which is a contraction semigroup if a~ >=0 and fl~ >= O. 

PROOF. By Theorem (8.2) we know that - A # generates a compact, positive, 

analytic semigroup on C0(~). Moreover, Theorem (8.3) implies that - A  # 

generates a contraction semigroup on Co(~), provided a ~ _-> 0 and/3 g" -> 0. From 

Theorem (10.2) we know that L~(fl) is the A~-dual of Co(~) and - A ~  is the 

A~-dual operator of - A #. It is an obvious consequence of Theorem (9.4) that 

(A #)'D A~. Moreover, o'(A*) = o'(A ;)  = tr(A ~) = tr(Ap,) = o'(A~) by Theorem 

(7.1) and the fact that the spectrum of Ap is independent of p E [1, oo]. Let now 

h ~ tr(A #) and v E L1(I))C [Co(l~)]'. Then there is a unique u E dom(A~) such 

that v = (h + A~)u. Hence v = (h + (A*)')u, since (A*)' D A1, which shows that 

R ( A , ( - A * ) ' ) ( L I ( ~ ) ) C  L~(I)). Since L~(fl)= C0(l~)~ by (10.2), the assertion 

follows now by applying Theorem (3.5) and Theorem (3.3) with X: = C0(l~-l) and 

B : =  - A  ~'. [] 

Our next theorem shows that the semigroup e-'a' is - -  for each fixed t >-- 0 - -  
the continuous extension of e-'% for every p E (1, oo). In addition it gives a useful 

and natural characterization of the dual semigroup of e-'A'. 

(10.4) THEOREM. e-'% = e-'A, I Lp (~) for 1 < p < co, and (e-'a')' = 

e - ' ~  I L (a )  for every t >= O. 

PROOF. The first assertion follows from (9.1). Since {e-'A" l t-->0} is an 

analytic semigroup on Lp (lq), it follows that e-'al(Lp (~-~))C dom(Ap) for t > 0 

and every p E [1,oo). Thus, by Sobolev's imbedding theorem, -,A- e , [L~(~)E  

3~(L=(~)). 

For u, v ~ L~(~) we deduce now from Theorem (7.1) and Lemma (2.1) that 

(e-'A'fu, v) = (e-'A';u, v) = (e-'~'~u, v) 

= ((e-'Ap)'u, v) = (u, e-'%v) = (u, e 'A,v), 
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where 1 < p < ~. Now the second assertion follows from the density of L=(I)) in 

L,(I-I). [] 

Our last result of this section is concerned with the smoothing property of the 
semigroup {e-'A, [ t _-> 0}. For this we denote by W2(I]) the projective limit of the 

spaces W2p(~), 1 < p < 0% 

W2(ll): --- lim W~(12). 

Thus W2(I~) is the vector space ("I{W~(I~) [ 1 < p < oo} endowed with the family 
of seminorms {[[-[[2,, [1 < p < oo}. Consequently W2(12)is a Frechet space and 

W~(l~)~ W2(12)'--~ W~(gl), 1 < p < 0% 

and W~(I~) is a closed linear subspace of W2(I)) (cf. [27, §2.5] for the elementary 

facts about projective limits). 

(10.5) COROLChRY. (t ~ e-'A') ~ C((0, oo), L#(L,(O), W~(a))). 

PROOF. Since {e ,A, [ t = 0} is an analytic semigroup, it is well known that 

(t ~ e -'A') E C((O, oo), o~97(L1(~~), D(A1))).  

Now the assertion follows from Proposition (9.2), the first part of Theorem 
(10.4), the fact that {e -'A~ It  :> 0} is an analytic semigroup on Lp (1)) for each 
p E (1, ~), from (7.2), and by means of the semigroup property. [] 

Clearly, if ~/, ~ ,  and 12 have better regularity properties we get better 
smoothing properties of the semigroup {e-'A' It >----0}. For example, if ~ and all 
coefficients of ~¢ and ~ belong to class C a, it follows that 

(t ~ e-tA1) ~ C~((0, oo), .~(L,(~'~), C~(fi))). 

This is a consequence of the fact that every analytic semigroup is an analytic 

function from (0, ~) into ~ (X ,  Xk), k E N, where Xk equals the domain of the 

k-th power of the infinitesimal generator endowed with the graph norm. 

11. Contraction semigroups in Lp (1~), 1 ~ p < 

Throughout this section we assume again that (~#,  ~#)  is a regular elliptic 
BVP. 

First we consider the case that - A  s generates a contraction semigroup in 
L v (1-1) for every p E [1, ~). 
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* > 0 and [30, [3,'~ > O. Then (11.1) THEOREM. Suppose that ao, ao = = 

- Ap E ~(Lp (~) ,  1, O) ]or each p E [1, oo). 

PROOF. It follows from Theorem (10.3) that -A1E~(LI(Y~) , I ,0 ) ,  and 

Theorems (8.3) and (10.2), together with Theorem (3.3), imply that - A ~  E 

O3(L,(~), I, 0). Thus ]]e-'a'll, =<1 and, by Theorem (10.4), 

Ile-'A, = ) [ (e - 'A~) ' l [~  = Ile-'AVll, _-< 1 

for all t ~ O. Now the assertion is a consequence of the Riesz-Thorin theorem 

(e.g. [4, theorem 1.1.1]). [] 

(11.2) COROLLARY. Suppose that Fo = 012 (Dirichlet boundary conditions). 

Then - A p  generates a contraction semigroup on Lp (fl)  for each p E [1, ~) iff 

ao >= 0 and ao - Djaj >= O. 

PROOF. This follows from Theorem (11.1), formula (4.5), and Remark (8.4).1-3 

(11.3) REMARK. Suppose that [3 = Ua. Then it follows from the considera- 

tions in Section 4 that [3~' = [30 + a J .  Hence, in this case, the conditions ao >= O, 

a o - D j a j  >= O, flo >= O, and aj# = 0 on F1 are sufficient for - A e  to generate a 

contraction semigroup in every Lp(l)), 1-<p < ~ .  Under slightly stronger 

conditions (namely, [3=ua ,  ao>=a>O,,  a o - D j a j > = a ,  [3o=0, aj#>=O on 

FI: = 0fl) Br6zis and Strauss [6] have shown that - A ~  generates a strongly 

continuous contraction semigroup on L~(I)). 

It is a more delicate question to characterize those BVPs ( M , ~ )  which 

generate contraction semigroups in each Lp (12), 1 =< p < % if Ft ~ ~ .  Even if one 

shows that [30 => 0 is a necessary condition for - A  to generate a contraction 

semigroup on Co(~), it is not clear what this does mean for - A p ,  since the 

coefficients aj of M can be modified on a set of measure zero without changing 

the Lp-realization Ap for 1 =< p < ~. [] 

As a further consequence of Theorem (11.1) we obtain the following version 

of the weak maximum principle. 

(11.3) PROPOSmON. Suppose that ao, a o = 0 and [30, [3 o >= O. Then 

(11.1) ess-sup (1 + AA1)-'u  llu÷ll  

where u* : = max(u, 0). 

VA_->0, u C L , ( ~ ) ,  

PROOF. It follows from Theorem (11.1) that 

II(l+*A,)-'ull. llull  vx o, pE(1,oo), 
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Hence, letting p--> 0% we find that 

(11.2) II(l+)tA,)-lull®<=llu}l~ VA >=0, u ~L~(Ft). 

Since (1 + )tA1) -1>- 0 for )t > 0  by the positivity of the semigroup {e ,A, It >=0} 

(e.g. [14, theorem 11.7.2]), we deduce from u<=u ÷ that ( l+) tA1)- lu_-  < 

(1 + A 1 ) - l u  +. Now the assertion follows from (11.2). [] 

Proposition (11.3) generalizes a corresponding result of Br6zis and Strauss [6], 

where inequality (11.1) is one of the basic hypotheses under which the existence 

of weak solutions to semilinear equations of the form A~u + g ( u ) ~  f is proven 

in the case that f E LI([~) and g is a maximal monotone graph in R. We leave it 

to the reader to apply the general results of this paper to semilinear elliptic BVPs 

along the lines of [6]. 

12. Spectral properties and growth estimates 

Let X be an OBS. Then x E X + is a quasi-interiorpoint of X ÷ if the linear hull 

of the order interval [0, x ] :={y  E X I 0 = < y  _--<x} is dense in X. If T E ~ + ( X )  
then T is said to be irreducible if there exists a A > r(T), where r(T) denotes the 

spectral radius of T, such that 

(12.1) TR(A, T)x = 2 h-kT~x 
k = l  

is a quasi-interior point of X ÷ for every x > 0 (e.g. [27, V.7.7]). If X = L, (9t), 

1 _-< p < 0% then u E X ÷ is a quasi-interior point of X ÷ iff u(x) > 0 for a.e. x E 1). 

If C is a densely defined closed linear operator in an arbitrary Banach space 

then 

s ( C ) : =  sup{Re )t I )t E o-(C)} 

is the spectral bound of C. 

After these preparations we can prove some important spectral properties of 

ep.  

(12.1) THEOREM. o'(A ) contains a least real eigenvalue )to, the principal 

eigenvalue of (sg, ~3) and )to is simple and has a positive eigen[unction Uo E 

W~(I)) such that Uo(X)>0 for x E a U F 1  and (OudOf~)(x)<O for x Er0 .  
Moreover, )to is the only eigenvalue of A having a positive eigen[unction, and 
- )to = s( - A) .  Finally, ()t + Ap) -~ is positive and irreducible [or )t > - ho and 
1 < p < 0% and there is no eigenvalue )t / )to o[ A with Re()t ) = )to. 
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PROOF. Let s : = s ( - A ) .  Hence s = s ( - A p )  for every p E ( 1 ,  oo), since 

o-(A) = o-(Ap). Let now A > 2  and p E ( 1 , ~ )  be fixed, and let T:=(A +A~)  ~. 

Then,  by a standard bootstrap argument, for each v E L~(Y~)\{0} there is a 

k C N* such that Tkv E W2q(fl), where q > n. Hence it follows from Theorems 

(6.1) and (12.1) that TR(p., T)v is a quasi-interior point of L~(Y~) for /x > 

r ( T ) = :  r. Hence Tis irreducible and [27, app. 3.2] implies that r > 0, that r is a 

simple eigenvalue of T, that r possesses a positive eigenfunction uo which is a 

quasi-interior point of L~(fl), and that there is a positive eigenfunction 

Vo E L;,(II)  to the eigenvalue r of T' such that (v0, u) > 0 for all u ~ L~(f~)\{0}. 

Suppose now that A' is an eigenvalue of T possessing a positive eigenfunction u. 

Then A'(vo, u) = (vo, Tu) = (T'vo, u) = r(vo, u), which implies A' = r. Thus r is 

the only eigenvalue of T having a positive eigenfunction. 

Clearly, Apuo = (( l / r)  - A )uo, which shows that o-(A) rq R / Q. Hence A has a 

least real eigenvalue, )to, and a bootstrap argument shows that uoE W~(ll). 

Thus, by adding the term /xu0 to both sides of the last equation, where /x is 

sufficiently large, we deduce from Theorem (6.1) that uo(x)> 0 for x E fl  U F1 

and (Ouo/O~)(x) < 0 for x E Fo. 

We can now invoke [13, theorem 3.3] to obtain s E o-( - A )  and (A + Ap) -~ => 0 

for 3. > s. Hence ho = - s. Let  3. > - 3.~ be fixed and let 1 x: = A + 3.0 > 0. Then 

o - ( 3 . + A ) C { z E C I R e z _ - - > t x }  and T : = ( A + A ~ )  -~ is compact. Moreover,  

r: = r(T) E o-(T) by the above considerations, which implies r = 1/tx. From this 

we deduce that the positive eigenfunction uo of A belongs to the eigenvalue A0. 

Now all the remaining assertions, but the very last one, follow from the spectral 

mapping theorem (e.g. [9, lemma VII.9.2]). 

Suppose that there is a A E o-(A)\{Ao} with Re(A) = Ao. Then it follows from 

[12, theorem (2.4)] that 3.o+iklmA C o ' ( A ) f o r  every k ~ Z .  Since - A p  
generates an analytic semigroup, it is known that there are constants 3' E R and 

a E (0, 7r/2) such that o-(A) C {z E C [I arg z I < a}, which gives a contradiction. 
[] 

Since there is no assumption on the sign of/30, the above theorem is new, even 

in the case of smooth coefficients of ( J ,  Y3) and a smooth domain fL 

Throughout the remainder of this section we presuppose again that (sg ~, ~*)  is 
a regular elliptic BVP. 

By Corollary (9.3) we know that o-(A~)= o-(A). The following proposition 

complements Theorem (12.1). 

(12.2) PROPOSITION. (3. + At) -~ is positive and irreducible for A > -3.0. 
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PROOF. Since (A + A1) ~D (2, + Ap)  -1 for p > 1 and A @ p ( A ) ,  the positivity 

of (A + A1) -~ for A > - Ao follows from Theorem (12.1) and the density of L~(f~) 

in L[(II).  Now the irreducibility of (A + A1) ~ for A > -Ao is a consequence of 

Proposition (9.2) and the irreducibility of (A + Ap) -1 for p > 1. [] 

In the following theorem we give two important estimates. We emphasize the 

facts that these estimates are independent of p E [1, oo) and that the exponential 

bound is optimal. 

(12.3) THEOREM. There are constants M and N such that 

(12.2) II e-'% lip --< Me-*o' 

and 

(12.3) ItApe ,A lip ~ Nt-le-~°' 

for all t > 0 and p E [1, ~). 

PROOF. By Theorem (12.1) and Corollary (9.3) the space L~(I)) has a direct 

sum decomposition L ~ ( I I ) = R u o O X ~ ,  where X~ is invariant under A~ and 

o-(A~ I X~) = ~r(A)\{Ao} (e.g. [15, theorem 111.6.17]). Since the spectrum of A1 is 

contained in a proper sector of the complex plane and there is no eigenvalue of 

A1 [ X1 with real part )to, the fact that A1 has a compact resolvent implies that 

s~ := s ( - A a  I X 0 <  -A0. The representation formula (3.3) shows that Ru0 and 
X~ are both invariant under e - 'A ' ,  that e - 'A '  I X 1 - - - e  ,A~IX,, and that e- 'A~Uo = 

e-"°'Uo for all t => 0. Clearly {e-'A'lx~ [ t >= 0} is a compact analytic semigroup on 

Xl. Hence, by the spectral mapping theorem (for the point spectrum) of analytic 
semigroups (e.g. [23, corollary I1.3.4]), o-(e -'A~Ix,) = e -'~(AdxO for every t > 0 .  

Thus 

r(e -'a~lx~) = sup{Ix I I ~ c tr(e-'a,lx')} = e `sl 

for t _->0. On the other hand it is well known that r(e-'A'lx') = e %' for all t _->0, 

where 

tOo = lim t -~ log II e-'A,l×,lll 

= inf{to E R [ 3 M  - 1: II e-'A'lX' I1' ~ Me ~' Vt  >= 0} 

(e.g. [8, theorem 1.22] and [7, proposition 1.1.2]). Hence there is a constant 

M~ => 1 such that Ile-'Al~X'll, <M~e  -~o' for t > 0 .  This implies the existence of a 
constant M => 1 such that 
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]]e-'A, ttl<=Me ~,; Vt__>0, 

that is, such that - A 1 E  ~(LI(fl) ,  M, - A0). 

By applying the same argument to - A (and by increasing M if necessary), we 

find that - A E ~3(Co(~), M, - A0). Thus - A # E ~(Ll(f~),  M, - Ao) by Theorem 

(10.2) and Theorem (3.3). Now (12.2) follows from the Riesz-Thorin theorem 

and from Theorem (10.4), since 

Ile-'A'll~ = II(e 'A~)'II~ -= tle-'a'~lll <-~ Me -h''' 

for t => 0. 

Since - A j  E N(L~(~)) by Theorem (I0.3), it follows that 

lim tllale-'A'lll < 
t ~ 0  

(e.g. [7, proposition 1.1.11]). Hence there are constants N~ and 8 > 0 such that 

t ll Ale ,A, It, --<-- N, for 0 < t < & Thus, by (12.2), 

I I A , e - " l l ,  = lie " ~A'A~e-SA'II, <---- ~ - ' N I M e - "  ~'"° 

for t = & Consequently there is a constant N such that 

IIm,e-"ll,<-_Nt-le -~o' V t > 0 .  

By applying the same argument to - A '~ ~ N(L~(O)) we can assume that also 

Il A f e 'A'r ll <---- N t - ' e  -"°' V t > 0 .  

Using the fact that A ~' I Le'(O) - - A p, = A ~ for 1 < p < ~, that Ap c o m m u t e s  with 

e -%,  and the density of dom(Ap) in L~(I~), we see, similarly as in the proof of 

Theorem (10.4), that 

A~e-'A' I L=(II) = (A  ~e-'A ~'), 

for t > 0. Now (12.3) follows again by the Riesz-Thorin theorem. [] 

The following corollary shows that the semigroup {e '% It =>0} has a 

holomorphic extension to a sector around R ÷ which is independent of p E [1, ~). 

(12.4) COROt.LAR¥. There exists a E (0, 7r/2] such that {e'X0e-'ap I t => 

0} C ~(Lp (i'l)) extends for each p E [1, ~) to a bounded holomorphic semigroup on 

the sector {z E C II arg z I < a }. 

PROOF. It follows from (12.2) and (12.3) that there is a constant M~ such that 

II(a~ - ;to)e-"~-*OIl~ <- e-"°'{llA.e -'~ I1~ + I;~01 Ile-'.  II.}--  < M~/t 
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for 0 < t =< 1 and 1 _-< p < oo. Now the assertion is a consequence of well known 

facts about analytic semigroups (e.g. [7, proposition 1.1.11]). [] 

Since W~(~)'--~ L=(I)), it follows from Theorem (10.4) and Corollary (10.5) 

that e- 'a '  C ~(Lp (1)), Lq (1))) for 1 _<- p -_< q =< ~ and t > 0. Our last proposition 

gives an estimate for the I1" II~.~-norm, that is, the norm in 5f(Lp (~) ,  Lq (12)) of 
e -tA1. 

(12.5) PROPOSITION. Let  1 <= p < q < ~. Then there is a constant c: = c (p, q)  

such that 

IIe -tA111.,q ct-("/:)('/P-'/q)e ~o, Vt > O. 

PROOF. By replacing A1 by A1-Ao,  we can assume that Ao=0.  Let 

a : = ½ n ( 1 / p - 1 / q )  and assume that p > 1. If a < 1, then 

II u IIq --< c II.  II pll u ii1; o 

by the Gagliardo-Nirenberg inequality (e.g. [11, theorem 10.1]). Since II" IJ=  is 

equivalent to the graph norm of A s = A 1 ] Le (f~) and since A e is invertible, the 

assertion follows from Theorem (12.3). If a _-> 1, we obtain the assertion by an 

obvious iteration argument based on the semigroup property. Thus, in 

particular, 

II e --tAl Ilp,~ ~ Ct-"/2P V t > O. 

By applying this argument to e -'A~ and using Theorem (10.4) we see that 

][ e -tAl [[1.q = [[ e-tA T [[q,.~ ~ ¢t -(n/2)O-l/q), V t > 0  

and the assertion has been proven. [] 

Estimates of the above type play a considerable r61e in connection with 

semilinear evolution equations (e.g. [26, 36]). The proof of Proposition (12.5) for 

p > 1 follows [35, lemma 4.1]. 
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